Authors

1 Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Human Vaccines, Razi Serum and Vaccine Research Institute, Karaj, Alborz, Iran

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) are known as a super‑family of enzymes 
which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic‑3’,5’‑adenosine 
monophosphate (cAMP), and cyclic‑3’,5’‑guanosine monophosphate that are expressed in 
a variety of cell types that can exert various functions based on their cells distribution. The 
PDE4 family has been the focus of vast research efforts over recent years because this family 
is considered as a prime target for therapeutic intervention in a number of inflammatory 
diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, 
and it should be used and researched by pharmacists. This is because the major isoform of 
PDE that regulates inflammatory cell activity is the cAMP‑specific PDE, PDE4. This review 
discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells 
distribution, and pharmacological properties of PDE4 which can be informative for all 
pharmacy specialists.

Keywords

  1. GuoL, LuoL, JuR, ChenC, ZhuL, LiJ, etal. Carboxyamidotriazole: 
    A novel inhibitor of both cAMP‑phosphodiesterases and 
    cGMP‑phosphodiesterases. Eur J Pharmacol 2015;746:14‑21.
    2. Rickles RJ, Pierce LT, Giordano TP 3rd, Tam WF, McMillin DW, 
    Delmore J, et al. Adenosine A2A receptor agonists and 
    PDE inhibitors: A synergistic multitarget mechanism 
    discovered through systematic combination screening in B‑cell 
    malignancies. Blood 2010;116:593‑602.
    3. Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, 
    Manganiello V. Cyclic nucleotide phosphodiesterases: 
    Important signaling modulators and therapeutic targets. Oral 
    Dis 2015;21:e25‑50.
    4. Chen X, Zhao X, Xiong Y, Liu J, Zhan CG. Fundamental 
    reaction pathway and free energy profile for hydrolysis 
    of intracellular second messenger adenosine 3’,5’‑cyclic 
    monophosphate (cAMP) catalyzed by phosphodiesterase‑4. 
    J Phys Chem B 2011;115:12208‑19.
    5. Blaha M, Nemcova L, Prochazka R. Cyclic guanosine 
    monophosphate does not inhibit gonadotropin‑induced 
    activation of mitogen‑activated protein kinase 3/1 in pig 
    cumulus‑oocyte complexes. Reprod Biol Endocrinol 2015;13:1.
    6. Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ. Vascular 
    natriuretic peptide receptor‑linked particulate guanylate 
    cyclases are modulated by nitric oxide‑cyclic GMP signalling. 
    Br J Pharmacol 2003;139:1289‑96.
    7. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) 
    superfamily: A new target for the development of specific 
    therapeutic agents. Pharmacol Ther 2006;109:366‑98.
    8. Demirbas D, Wyman AR, Shimizu‑Albergine M, Cakici O, 
    Beavo JA, Hoffman CS. A yeast‑based chemical screen 
    identifies a PDE inhibitor that elevates steroidogenesis in 
    mouse Leydig cells via PDE8 and PDE4 inhibition. PLoS One 
    2013;8:e71279.
    9. Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, 
    Hendrix M. Characterization of the first potent and selective 
    PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 
    2005;68:1775‑81.
    10. Biswas KH, Sopory S, Visweswariah SS. The GAF domain of 
    the cGMP‑binding, cGMP‑specific phosphodiesterase (PDE5) 
    is a sensor and a sink for cGMP. Biochemistry 2008;47:3534‑43.
    11. Han P, Zhu X, Michaeli T. Alternative splicing of the 
    high affinity cAMP‑specific phosphodiesterase (PDE7A) 
    mRNA in human skeletal muscle and heart. J Biol Chem 
    1997;272:16152‑7.
    12. Lau JK, Li XB, Cheng YK. Asubstrate selectivity and inhibitor 
    design lesson from the PDE10‑cAMP crystal structure: A 
    computational study. J Phys Chem B 2010;114:5154‑60.
    13. Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, 
    Soderling S, et al. Molecular cloning and characterization of 
    a distinct human phosphodiesterase gene family: PDE11A. 
    Proc Natl Acad Sci U S A 2000;97:3702‑7.
    14. Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T, Omori K. 
    Isolation and characterization of two novel phosphodiesterase 
    PDE11A variants showing unique structure and tissue‑specific 
    expression. J Biol Chem 2000;275:31469‑79.
    15. Beavo JA, Reifsnyder DH. Primary sequence of cyclic 
    nucleotide phosphodiesterase isozymes and the design of 
    selective inhibitors. Trends Pharmacol Sci 1990;11:150‑5.
    16. Goldstein I, Lue TF, Padma‑Nathan H, Rosen RC, Steers WD, 
    Wicker PA. Oral sildenafil in the treatment of erectile 
    dysfunction. Sildenafil Study Group. N Engl J Med 
    1998;338:1397‑404.
    17. Souness JE, Aldous D, Sargent C. Immunosuppressive and 
    anti‑inflammatory effects of cyclic AMP phosphodiesterase 
    (PDE) type 4 inhibitors. Immunopharmacology 2000;47:127‑62.
    18. Lipworth BJ. Phosphodiesterase‑4 inhibitors for asthma and 
    chronic obstructive pulmonary disease. Lancet 2005;365:167‑75.
    19. Franciosi LG, Diamant Z, Banner KH, Zuiker R, Morelli N, 
    Kamerling IM, et al. Efficacy and safety of RPL554, a dual PDE3 
    and PDE4 inhibitor, in healthy volunteers and in patients with 
    asthma or chronic obstructive pulmonary disease: Findings 
    from four clinical trials. Lancet Respir Med 2013;1:714‑27.
    20. BinMahfouz H, Borthakur B, Yan D, George T, Giembycz MA, 
    Newton R. Superiority of combined phosphodiesterase PDE3/
    PDE4 inhibition over PDE4 inhibition alone on glucocorticoid‑ 
    and long‑acting ß2‑adrenoceptor agonist‑induced gene 
    expression in human airway epithelial cells. Mol Pharmacol 
    2015;87:64‑76.
    21. SuvarnaNU, O’DonnellJM. Hydrolysis of N‑methyl‑D‑aspartate 
    receptor‑stimulated cAMP and cGMP by PDE4 and PDE2 
    phosphodiesterases in primary neuronal cultures of rat 
    cerebral cortex and hippocampus. J Pharmacol Exp Ther 
    2002;302:249‑56.
    22. Akaike N, Furukawa K, Kogure K. Rolipram enhances 
    the development of voltage‑dependent Ca2+current and 
    serotonin‑induced current in rat pheochromocytoma cells. 
    Brain Res 1993;620:58‑63.
    23. Bao Z, Feng Y, Wang H, Zhang C, Sun L, Yan Z, et al. Integrated 
    analysis using methylation and gene expression microarrays 
    reveals PDE4C as a prognostic biomarker in human glioma. 
    Oncol Rep 2014;32:250‑60.
    24. Horton YM, Sullivan M, Houslay MD. Molecular cloning of 
    a novel splice variant of human type IVA (PDE‑IVA) cyclic 
    AMP phosphodiesterase and localization of the gene to 
    the p13.2‑q12 region of human chromosome 19 [corrected]. 
    Biochem J 1995;308 (Pt 2):683‑91.
    25. Engels P, Sullivan M, Müller T, Lübbert H. Molecular 
    cloning and functional expression in yeast of a human 
    cAMP‑specific phosphodiesterase subtype (PDE IV‑C). FEBS 
    Lett 1995;358:305‑10.
  2. 26. Houslay MD, Schafer P, Zhang KY. Keynote review: 
    Phosphodiesterase‑4 as a therapeutic target. Drug Discov 
    Today 2005;10:1503‑19.
    27. OwensRJ, Catterall C, Batty D, Jappy J, RussellA, Smith B, et al.
    Human phosphodiesterase 4A: Characterization of full‑length 
    and truncated enzymes expressed in COS cells. Biochem J 
    1997;326 (Pt 1):53‑60.
    28. Lario PI, Bobechko B, Bateman K, Kelly J, VrielinkA, Huang Z. 
    Purification and characterization of the human PDE4A 
    catalytic domain (PDE4A330‑723) expressed in Sf9 cells. Arch 
    Biochem Biophys 2001;394:54‑60.
    29. Richter W, Conti M. The oligomerization state determines 
    regulatory properties and inhibitor sensitivity of 
    type 4 cAMP‑specific phosphodiesterases. J Biol Chem 
    2004;279:30338‑48.
    30. Peters M, Bletsch M, Stanley J, Wheeler D, Scott R, Tully T. The 
    PDE4 inhibitor HT‑0712 improves hippocampus‑dependent 
    memory in aged mice. Neuropsychopharmacology 
    2014;39:2938‑48.
    31. Beard MB, Huston E, Campbell L, Gall I, McPhee I, Yarwood S, 
    et al. In addition to the SH3 binding region, multiple 
    regions within the N‑terminal noncatalytic portion of the 
    cAMP‑specific phosphodiesterase, PDE4A5, contribute to its 
    intracellular targeting. Cell Signal 2002;14:453‑65.
    32. KimJS, BaileyMJ, HoAK, Møller M, GaildratP, KleinDC. Daily 
    rhythm in pineal phosphodiesterase (PDE) activity reflects 
    adrenergic/3’,5’‑cyclic adenosine 5’‑monophosphate induction 
    of the PDE4B2 variant. Endocrinology 2007;148:1475‑85.
    33. BolgerGB, DunlopAJ, MengD, DayJP, KlussmannE, BaillieGS, 
    et al. Dimerization of cAMP phosphodiesterase‑4 (PDE4) in 
    living cells requires interfaces located in both the UCR1 and 
    catalytic unit domains. Cell Signal 2015;27:756‑69.
    34. El Bawab S, Macovschi O, Sette C, Conti M, Lagarde M, 
    Nemoz G, et al. Selective stimulation of a cAMP‑specific 
    phosphodiesterase (PDE4A5) isoform by phosphatidic acid 
    molecular species endogenously formed in rat thymocytes. 
    Eur J Biochem 1997;247:1151‑7.
    35. Swinnen JV, D’Souza B, Conti M, Ascoli M. Attenuation of 
    cAMP‑mediated responses in MA‑10 Leydig tumor cells by 
    genetic manipulation of a cAMP‑phosphodiesterase. J Biol 
    Chem 1991;266:14383‑9.
    36. Marquette A, André J, Bagot M, Bensussan A, Dumaz N. 
    ERK and PDE4 cooperate to induce RAF isoform switching 
    in melanoma. Nat Struct Mol Biol 2011;18:584‑91.
    37. Boomkamp SD, McGrath MA, Houslay MD, Barnett SC. Epac 
    and the high affinity rolipram binding conformer of PDE4 
    modulate neurite outgrowth and myelination using an in vitro 
    spinal cord injury model. Br J Pharmacol 2014;171:2385‑98.
    38. Eskandari N, Bastan R, Ahmadi M, Peachell PT. Evaluation 
    of the correlation and reproducibility between histamine, 
    IL‑4, and IL‑13 release from human basophils. Iran J Allergy 
    Asthma Immunol 2014;13:190‑7.
    39. Weston MC, Anderson N, Peachell PT. Effects of 
    phosphodiesterase inhibitors on human lung mast cell and 
    basophil function. Br J Pharmacol 1997;121:287‑95.
    40. Zhao Y, Zhang HT, O’Donnell JM. Inhibitor binding to type 4 
    phosphodiesterase (PDE4) assessed using [3H] piclamilast 
    and [3H] rolipram. J Pharmacol Exp Ther 2003;305:565‑72.
    41. Lagente V, Martin‑Chouly C, Boichot E, MartinsMA, Silva PM. 
    Selective PDE4 inhibitors as potent anti‑inflammatory drugs 
    for the treatment of airway diseases. Mem Inst Oswaldo Cruz 
    2005;100 Suppl 1:131‑6.
    42. Beghè B, Rabe KF, Fabbri LM. Phosphodiesterase‑4 inhibitor 
    therapy for lung diseases. Am J Respir Crit Care Med 
    2013;188:271‑8.
    43. De Savi C, Cox RJ, Warner DJ, Cook AR, Dickinson MR, 
    McDonough A, et al. Efficacious inhaled PDE4 inhibitors 
    with low emetic potential and long duration of action for the 
    treatment of COPD. J Med Chem 2014;57:4661‑76.
    44. Patel BS, Prabhala P, Oliver BG, Ammit AJ. Inhibitors of 
    Phosphodiesterase 4, but Not Phosphodiesterase 3, Increase 
    ß2‑Agonist‑Induced Expression of Antiinflammatory 
    Mitogen‑Activated Protein Kinase Phosphatase 1 in Airway 
    Smooth Muscle Cells. Am J Respir Cell Mol Biol 2015;52:634‑40.
    45. Eskandari N, Bastan R, Peachell PT. Regulation of human 
    skin mast cell histamine release by PDE inhibitors. Allergol 
    Immunopathol (Madr) 2015;43:37‑41.
    46. Giembycz MA, Maurice DH. Cyclic nucleotide‑based 
    therapeutics for chronic obstructive pulmonary disease. Curr 
    Opin Pharmacol 2014;16:89‑107.
    47. GiembyczMA, NewtonR. How phosphodiesterase 4 inhibitors 
    work in patients with chronic obstructive pulmonary disease 
    of the severe, bronchitic, frequent exacerbator phenotype. Clin 
    Chest Med 2014;35:203‑17.
    48. Shan WJ, Huang L, Zhou Q, Jiang HL, Luo ZH, Lai KF, 
    et al. Dual ß2‑adrenoceptor agonists‑PDE4 inhibitors for 
    the treatment of asthma and COPD. Bioorg Med Chem Lett 
    2012;22:1523‑6.
    49. Ochiai K, Takita S, Eiraku T, Kojima A, Iwase K, Kishi T, et al.
    Phosphodiesterase inhibitors. Part 3: Design, synthesis and 
    structure‑activity relationships of dual PDE3/4‑inhibitory 
    fused bicyclic heteroaromatic‑dihydropyridazinones with 
    anti‑inflammatory and bronchodilatory activity. Bioorg Med 
    Chem 2012;20:1644‑58.
    50. Eskandari N, Wickramasinghe T, Peachell PT. Effects 
    of phosphodiesterase inhibitors on interleukin‑4 and 
    interleukin‑13 generation from human basophils. Br J 
    Pharmacol 2004;142:1265‑72.
    51. Brunnée T, Engelstätter R, Steinijans VW, Kunkel G. 
    Bronchodilatory effect of inhaled zardaverine, a 
    phosphodiesterase III and IV inhibitor, in patients with 
    asthma. Eur Respir J 1992;5:982‑5.
    52. Mokry J, Joskova M, Mokra D, Christensen I, Nosalova G. 
    Effects of selective inhibition of PDE4 and PDE7 on airway 
    reactivity and cough in healthy and ovalbumin‑sensitized 
    guinea pigs. Adv Exp Med Biol 2013;756:57‑64.