Clinical Study

Clinical Response and Outcome in Patients with Multidrug Resistant Gram-negative Infections

Masoume Malekolkottab¹, Lida Shojaei¹, Hossein Khalili¹, Mahsa Doomanlou²

¹Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

²Central Laboratory, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran **Objective:** In this study, frequency and antimicrobial sensitivity pattern of multidrug resistant (MDR) microorganisms were evaluated in a referral teaching hospital in Iran.

Methods: Patients with MDR Gram-negative pathogens were followed during the course of hospitalization. Demographic data, baseline diseases, type of biological sample, isolated microorganism, type of infection, antibiotic regimen before the availability of the culture result and change in the antibiotic regimen following receiving the antibiogram results, response to the treatment regimen, and duration of hospitalization and patient's outcome were considered variables for each recruited patient.

Findings: In 71% of the patients, antibiotic regimens were changed according to the antibiogram results. A carbapenem alone or plus amikacin or ciprofloxacin were selected regimens for patients with extended-spectrum beta-lactamase (ESBL) infections. For patients with probable carbapenem-resistant *Enterobacteriaceae* infections, a carbapenem plus colistin was the most common antibiotic regimen. Clinical response was detected in 54.5% of the patients who were treated based on the antibiogram results. Clinical response was higher in the ESBL producers (ESBL-P) than the non-ESBL-P infections (75% vs. 52%). However, this difference was not significant (P = 0.09). Most nonresponders (80%) had sepsis due to *Klebsiella* species. Finally, 41.9% of the patients were discharged from the hospital and 58.2% died.

Conclusion: Same as other countries, infections due MDR microorganisms is increasing in the recent years. This type of resistance caused poor clinical response and high rate mortality in the patients.

Received: March 2016 Accepted: May 2016

KeyWords: *Ethiopia, expectation, pharmaceutical services, satisfaction, service quality*

INTRODUCTION

44

The rapid spread of resistance among common pathogenic microorganisms is a serious challenge around the word. This phenomenon affects antibiotics' effectiveness and limits available options for the treatment of common infections in human.^[1,2]

Serious infections due to beta-lactamase producing microorganisms, especially in hospitalized patients are increasing now. Several mechanisms for antibiotic resistance have been introduced in Gram-negative bacteria. Both enzymatic and nonenzymatic pathways cause resistance third-generation cephalosporins, aminoglycosides. to fluoroquinolones, and carbapenems. Antibiotic resistance occurs following mutation in chromosomal genes or by horizontal transfer of genes between different microorganisms. The main mechanism of antimicrobial resistance in Enterobacteriaceae family is transferring of plasmid encoding (ESBL).[1-6] extended-spectrum beta-lactamase **ESBL** producers (ESBL-P) are Gram-negative microorganisms which

Access this article online							
Quick Response Code:							
	Website: www.jrpp.net						
	DOI: 10.4103/2279-042X.200990						

almost always belong to the *Enterobacteriaceae* species. These Gram-negative bacteria secret ESBL enzyme in periplasmic space and hydrolyze the beta-lactam ring in penicillins, cephalosporins, and aztreonam. In general, carbapenems and cephamycines are resistant to this enzyme. ESBL-P pathogens can cause severe and life-threatening infections such as bacteremia, sepsis, pneumonia, and meningitis.^[3,4] In the United States, 26,000 infections and 17,000 deaths per 2012 were due to ESBL-P species.^[5]

to According the Centers for Disease Control 19% of and Prevention (CDC) report, more than healthcare-associated infections are resistant to extended-spectrum cephalosporins. In the United States, 37% of nosocomial infections were due to ESBL-P Enterobacteriaceae species. The mortality rate was 57%

> Address for correspondence: Prof. Hossein Khalili, E-mail: khalilih@sina.tums.ac.ir

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Malekolkottab M, Shojaei L, Khalili H, Doomanlou M. Clinical response and outcome in patients with multidrug resistant gram-negative infections. J Res Pharm Pract 2017;6:44-51.

more common in patients with bloodstream infection caused by ESBL-P than nonproducers.^[5] Prolong hospitalization, presence of invasive medical devices, receiving total parenteral nutrition, age <12 weeks, prior treatment with cephalosporins and aminoglycosides, recent surgery, and hemodialysis are defined as risk factors for colonization with ESBL-P species.^[7]

Antibiotic resistance is a critical issue in developing countries. The incidence of infections due to resistant microorganisms is increasing in the recent years in Iran.^[8,9] In this study, frequency and antimicrobial sensitivity pattern of multidrug resistant (MDR) Gram-negative microorganisms were evaluated in a referral teaching hospital in Tehran, Iran.

Methods

This cross-sectional study was performed between December 2014 and January 2016 in Imam Khomeini Hospital, a referral teaching hospital affiliated to the Tehran University of Medical Sciences, Tehran, Iran.

Patients with nosocomial infections (acquired 48-72 following the hospital admission) were included. Biologic clinical samples including urine, cerebrospinal fluid (CSF), blood, and tracheal secretions that were referred to the central laboratory department from different wards of the hospital were analyzed according to the clinical and laboratory standard institute instructions.^[10] Antimicrobial sensitivity patterns of all isolates were recognized by using standard antibiotic disks on Mueller-Hinton agar. Following antibiotic disks from HiMedia, Bioscience Company, India, was used for the primary antibiogram and ESBL screening; ciprofloxacin (5 µg), ceftriaxone (30 µg), cefotaxime (30 µg), ceftazidime (30 µg), amikacin (30 µg), ampicillin-sulbactam $(10/10 \ \mu g)$, imipenem $(10 \ \mu g)$, and meropenem $(10 \ \mu g)$. After 24 h of incubation, if an inhibitory concentration zone was <25 mm for ceftriaxone, 27 mm for cefotaxime or 22 mm for ceftazidime, phenotypic confirmatory test was performed with double disk synergy test. For this test, cefotaxime/clavulanic acid (30/10 µg) and ceftazidime/clavulanic acid (30/10 µg) discs were used.^[10] Increasing of ≥ 5 mm in the inhibition zone diameter in double synergy test versus the antibiotic tested alone was considered in favor of ESBL-P isolates. Non-ESBL isolates that were resistant to imipenem or meropenem was categorized as probable carbapenem-resistant Gram-negative microorganisms.[10]

Patients, in whom MDR Gram-negative pathogens were confirmed phenotypically, were detected and followed by the clinical pharmacists during the course of hospitalization. MDR was defined as resistance to at least three classes of antibiotics (aminoglycosides, anti-MRSA cephalosporins, antipseudomonal penicillins + beta-lactamase inhibitors, carbapenems, and nonextended spectrum cephalosporins; first and second generation cephalosporins, extended-spectrum cephalosporins; third fourth and and generation cephalosporins, cephamycins, fluoroquinolones, folate pathway inhibitors, glycylcyclines, monobactams, penicillins, penicillins + beta-lactamase inhibitors, polymyxins, phosphonic acids, phenicols, and tetracyclines).[11]

Demographic data, baseline diseases, type of biological sample, isolated microorganism, type of infection, antibiotic regimen before availability of the culture result, and change in the antibiotic regimen following receiving the antibiogram results, response to the treatment regimen, duration of hospitalization, and patient's outcome were considered variables for each recruited patient. Cultures compatible with patient clinical status were measured as true infection according to the CDC definitions for health-care associated infections.^[11] Patients with positive culture without these criteria were considered as colonized.

Statistical analyses were performed by the IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. (IBM Corp., Armonk, NY). Continuous data were expressed as a mean \pm standard deviation (SD). Categorical variables were reported as percentages. Chi-square or Fisher exact test was used for comparing the categorical variables between the groups. Continuous variables were compared by the independent *t*-test. *P* < 0.05 was defined as statistically significant.

RESULTS

During the study period, fifty patients with MDR Gram-negative infections including confirmed ESBL or probably carbapenem-resistant *Enterobacteriaceae* (CRE) were detected. The mean \pm SD of patients' age was 59.02 \pm 17.96 years old and thirty (60%) of them were males. Tracheal secretions (17 [34%]), urine (15 [30%]), blood (8 [16%]), soft tissue (3 [6%]), peritoneal fluid (2 [4%]), CSF (1 [2%]), and pleural fluid (1 [2%]) were positive in the patients. Most patients were hospitalized in Intensive Care Unit (35 [70%]) and general ward (8 [16%]), followed by emergency, neurosurgery, and Coronary Care Unit wards. *Klebsiella* species (78%), *Escherichia coli* (20%), and *Enterobacter cloacae* (2%) were isolated microorganisms from the patients' biological samples.

Antimicrobial sensitivity pattern of the microorganisms is shown in Table 1. Most active antibiotics were carbapenems and aminoglycosides, respectively. All of isolated E. coli and E. cloacae but only 56% of isolated Klebsiellas species were sensitive to carbapenems. The result of antimicrobial susceptibility tests revealed that 30% of the isolated microorganisms were resistant to carbapenems that may be CRE. However, most of these species (86.7%) were ESBL negative. According to the double disk synergy test, 17 (34%) of all isolates were ESBL-P and others were ESBL-negative. ESBL was positive in 58.8% and 41.2% of isolated Klebsiella species and E. coli, respectively. Based on the CDC definition, the clinical condition was compatible with the isolates in 62% of all patients and 25.8% of patients with ESBL-P infections. In 71% of the cases, antibiotic regimens were changed according to the antibiogram results. A carbapenem alone or plus amikacin or ciprofloxacin were selected regimens for patients with ESBL infections. For patients with probable CRE infections, a carbapenem plus colistin was the most common antibiotic regimen. Clinical response was detected in 54.5% of the patients who were treated based on the

antibiogram results. Clinical response was higher in the ESBL-P than the non-ESBL-P infections (75% vs. 52%). However, this difference was not significant (P = 0.09). Most nonresponders (80%) had sepsis due to *Klebsiella* species. Finally, 41.9% of the patients were discharged from the hospital and 58.2% died. Characteristics of patients with ESBL-P and probably CRE infections were summarized in Tables 2 and 3, respectively.

DISCUSSION

46

Inappropriate antibiotic administration and consequent increasing number of MDR pathogens including ESBL-P and CRE are a

serious worldwide concern in recent years.^[12-14] Rapid growing of ESBL-P and CRE among community and hospitalized patients is a global threat, especially in critically ill patients.^[15] Considering that only limited new antimicrobial agents have been introduced in recent years; in some situations, we do not have an effective weapon against these pathogens.^[13,15]

Following extensive use of cephalosporins in last years, resistance rate of *Enterobacteriaceae* family to these agents is increasing around the world. Cephalsporins-resistant rate of these microorganisms was 30% among 11 countries of Asia in 2010. This rate received to 87% in 2014 at Latin America.^[2]

Table 1: Resistance pattern of isolated Gram-negative pathogens											
Antimicrobial agents	Sensitive (%)		Interme	diate (%)	Resista	nce (%)	Not reported (%)				
	CRE	CRE ESBL		ESBL	CRE	ESBL	CRE	ESBL			
Third generation cephalosporins	-	-	-	-	95.5	97.9	4.5	2.1			
Ciprofloxacin	11.2	20.8	4.8	2.1	80	68.8	4	8.3			
Ampicillin-sulbactam	28.9	16.7	1.1	4.2	65.4	62.5	4.6	16.7			
Piperacillin-tazobactam	6.4	12.5	4.6	4.2	80.7	52.1	8.3	31.3			
Aminoglycosides	43.2	60.4	3.8	4.2	51.2	33.3	1.8	2.1			
Carbapenems	0	64.6	3.6	2.1	93.4	29.2	3	4.2			

ESBL=Extended spectrum beta-lactamase-producing, CRE=Carbapenem-resistant enterobacteriaceae

ge	Sex	Source of	Type of	ESBL	Baseline	Primary	Secondary	Duration of	Clinical	Outcome
/ear)		microorganism	microorganism	positive	diseases	antibiotic	antibiotic	hospitalization	response	
				or		regimen	regimen	(day)		
				negative		(before the	(after the			
						culture result)	culture			
9	Female	Urine	E. coli	Positive	HTN	Meropenem	result) Meropenem	86	Yes	Death
,	remate	Office	<i>E. con</i>	1 USITIVE	11110	*	*	80	105	Deatin
8	Male	Urine	E. coli	Nogotivo	Pladdor	Vancomycin Ciprofloxacin	Amikacin Piperacillin/	8	No	Death
>	Male	Uline	E. COll	Negative	cancer		tazobactam	0	INO	Death
					culleel	Piperacillin/ tazobactam	tazooactam			
						Metronidazole				
						Ceftriaxone				
5	Male	Blood	<i>Klebsiella</i> spp.	Negative	HTN and DM	Meropenem	Meropenem	12	Yes	Discharge
						Ciprofloxacin	Ciprofloxacin	L		U
						Vancomycin	*			
6	Male	Blood	Klebsiella spp. Negati	Negative	None	Meropenem	Meropenem	None	Yes	Discharge
						Vancomycin	Ciprofloxacin			
						Piperacillin/				
						tazobactam				
						Linezolid				
3	Male	Tracheal	Klebsiella spp.	Negative	Asthma and	Imipenem	Imipenem	11	Yes	Death
			11		COPD and	Ciprofloxacin	Ciprofloxacin			
					Esophagus candidiasis	Vancomycin				
7	Male	Tracheal	Klebsiella spp.	Negative	HTN and	Meropenem	None	11	No	Death
				-	CVA and	Vancomycin				
					seizure	Piperacillin/				
						tazobactam				
						Ceftriaxone				

Age	Sex	Source of	Type of	ESBL	Baseline	Primary	Secondary	Duration of	Clinical	Outcome
(year)		microorganism	microorganism	or negative		antibiotic regimen (before the culture result)	antibiotic regimen (after the culture result)	hospitalization (day)		
82	Male	Peritoneal fluid	E. coli	Positive	HTN	Imipenem Ciprofloxacin Metronidazole	Imipenem	33	Yes	Discharge
55	Male	Blood	Klebsiella spp.	Negative	DM and DLP and IHD and COPD and HCV	Imipenem Ciprofloxacin Vancomycin	Imipenem Ciprofloxacin	26	No treated	Death
53	Male	Tracheal	<i>Klebsiella</i> spp.	Positive		Amikacin Meropenem Ciprofloxacin Vancomycin	Amikacin Meropenem	9	Yes	Discharge
66	Male	CSF	<i>Klebsiella</i> spp.	Negative	Pituitary adenoma	Vancomycin Meropenem Colistin Cefazolin	Meropenem Colistin	68	Yes	Death
56	Male	Tracheal	<i>Klebsiella</i> spp.	Negative	Seizure	Vancomycin Meropenem Cefazolin Ciprofloxacin	Meropenem Ceftriaxone	29	Yes	Death
65	Male	Tracheal	<i>Klebsiella</i> spp.	Negative	None	Ceftriaxone Vancomycin Ampicillin Ciprofloxacin Piperacillin/ tazobactam	Meropenem	15	In- appreciable	Death
68	Female	Urine	E. coli	Positive	HTN and DM and IHD	Meropenem Vancomycin Ampicillin Metronidazole Cefixime	Imipenem	42	Yes	Discharge
63	Male	Tracheal	<i>Klebsiella</i> spp.	Positive	None	Meropenem Vancomycin Ciprofloxacin Colistin Ampicillin/ sulbactam Ceftriaxone	Colistin Ampicillin/ sulbactam	40	No	Death
33	Male	Blood	<i>Klebsiella</i> spp.	Negative	None	Meropenem Vancomycin Imipenem Piperacillin/ tazobactam Clindamycin	Meropenem Colistin	73	Yes	Discharge

Contd...

	e 2: Cor Sex	Source of	Type of	ESBL	Baseline	Primary	Secondary	Duration of	Clinical	Outcome
(year)		microorganism	microorganism			antibiotic regimen (before the culture result)	antibiotic regimen (after the culture result)	hospitalization (day)		
68	Female	Tracheal	<i>Klebsiella</i> spp.	Negative	HTN and DM	Meropenem Ciprofloxacin	Meropenem Ciprofloxacin	94	Yes	
						Vancomycin Colistin				
55	Male	Blood	Klebsiella spp.	Negative	ESRD	Cefazolin Meropenem	Meropenem	64	Yes	Discharge
						Vancomycin Ciprofloxacin				
67	Female	Tracheal	<i>Klebsiella</i> spp.	Negative	DM and HF	Colistin Imipenem	Meropenem	46	No	Death
27	Male	Tracheal	<i>Klebsiella</i> spp.	Negative	ESRD	Ciprofloxacin Ceftriaxone	Colistin	59	No	Death
						Meropenem				
						Vancomycin				
						Ciprofloxacin Colistin				
'1	Female	Blood	<i>Klebsiella</i> spp.	Negative	HTN and DM	Vancomycin	None	20	No treated	
						Ciprofloxacin				
						Piperacillin/ tazobactam				
						Clindamycin				
						metronidazole				
8	Male	Blood	E. coli	Negative	IDU	Meropenem	Meropenem	29	Yes	Discharg
						Vancomycin Ceftriaxone				
7	Male	Urine	E. coli	Positive	Alzheimer's		Meropenem	53	No	Discharg
					disease	Vancomycin	Ciprofloxacin			
						Ampicillin/ sulbactam				
28	Male	Soft tissue	E. coli	Negative	IDU	Imipenem	Imipenem	48	Yes	Discharge
-	F 1	0.0.1	F <i>I</i>	.		Vancomycin	D: 111. /	40	*7	D: 1
57	Female	Soft tissue	E. coli	Negative		Piperacillin/ tazobactam	Piperacillin/ tazobactam	40	Yes	Discharg
					mycosis	Vancomycin				
17	Female	Soft tissue	E. coli	Positive	Ovarian cancer	Piperacillin/ tazobactam	Piperacillin/ tazobactam	15	Yes	Discharge
						Metronidazole				
						Clindamycin				
						Ampicillin				
						Gentamicin				
						Metronidazole				
						Ceftizoxime				

Contd...

Age	Sex	Source of	Type of	ESBL	Baseline	Primary	Secondary	Duration of	Clinical	Outcome
(year))	microorganism	microorganism	positive	diseases	antibiotic	antibiotic	hospitalization	response	
				or		regimen	regimen	(day)		
				negative		(before the	(after the			
						culture result)	culture result)			
76	Male	Tracheal	Klebsiella spp.	Negative	DM and	Clindamycin	Imipenem	64	No	Death
					CABG and	Imipenem				
					CVA and	Vancomycin				
					HIN	Ampicillin/ sulbactam				
71	Male	Tracheal	Klebsiella spp.	Negative	None	Colistin	Colistin	31	No	Death
						Meropenem	Meropenem			
						Ciprofloxacin				
						Vancomycin				
						Ampicillin/ sulbactam				
70	Male	Peritoneal fluid	E. coli	Positive	ositive CLL	Imipenem	Imipenem	29	No	Death
						Ciprofloxacin	Ciprofloxacin			
						Ceftriaxone				
						Trimethoprim/ sulfamethoxazole				
						Azithromycin				
68	Male	Blood	Klebsiella spp.	Negative	None	Imipenem	Imipenem	72	No	Death
						Vancomycin				
34	Male	Tracheal	Klebsiella spp.	Negative	HCV	Ciprofloxacin	Meropenem	58	Yes	Discharge
						Vancomycin				
						Azithromycin				
						Clindamycin				
64	Female	Tracheal	Klebsiella spp.	Negative		Meropenem	Meropenem	79	No	Death
					cancer	Vancomycin	Colistin			
						Colistin				
						Ciprofloxacin				
						Imipenem				
						Metronidazole				

ESBL=Extended spectrum beta-lactamase-producing, CABG=Coronary artery bypass graft, DM=Diabetes mellitus, HTN=Hypertension, HCV=Hepatitis C virus, CLL=Chronic lymphocytic leukemia, IDU=Injection drug user, ESRD=End-stage renal disease, HF=Heart failure, IHD=Ischemic heart disease, *E. coli=Escherichia coli, DLP=Dyslipidemia*

Only in limited studies, the prevalence of ESBL-P pathogens was evaluated in Iran and ranged from 43.6% in Ilam to 74% in Milad Hospital.^[15] However, the average rate of ESBL-P microorganisms was 42.2% in Iran.^[16] In a recent study, more than 50% of isolated microorganisms from bile specimens were ESBL-P.^[17] The most isolated ESBL-P were *Klebsiella* species followed by *E. coli*.^[4] In European hospitals, more than 80% of isolated *E. coli* and *Klebsiella pneumonia* were belonged to the ESBL-P category.^[2]

In the present study, the frequency of ESBL-P pathogens was lower than the previous reports from our country. In a report from three hospitals of Iran, all isolated ESBL-P microorganisms were sensitive to carbapenems.^[15] However,

in our study, some of ESBL-P species and most of ESBL negative strains were CRE. All CRE were *Klebsiella* species.

To interpret the result of clinical responses, limitations of the study should be considered. The sample size of the study was small for assessment of the treatment outcome. ESBL-P pathogens were identified phenotypically but were not confirmed by the genotypic assay method. Genotypic assay is not easily available method in our hospitals and only is applied for research purpose. There are several clinical diagnostic laboratory tests for detection of ESBL-P microorganisms.^[18-21] Although double disk synergy test is a common and practical method for ESBL confirmation but some isolates may be missed by this test. The sensitivity of this method could be reduced by microorganisms

🗸 49

Age	Sex	Source of	Type of	ESBL	Baseline	Primary	Secondary	Duration of		Outcome
(year)		microorganism	microorganism	-	diseases	antibiotic	antibiotic	hospitalization	response	
				negative		regimen (before the	regimen (after the	(day)		
						culture	culture			
						result)	result)			
33	Male	Blood	Klebsiella spp.	Negative	None	Meropenem	Meropenem	73	Yes	Discharge
						Vancomycin	Colistin			
						Imipenem				
						Piperacillin/ tazobactam				
						Clindamycin				
55	Male	Blood	Klebsiella spp.	Negative	ESRD	Meropenem	Meropenem	64	Yes	Discharge
						Vancomycin				
						Ciprofloxacin				
						Colistin				
55	Male	Blood	<i>Klebsiella</i> spp.	Negative	DM/DLP/ IHD/COPD/ HCV	Imipenem	Imipenem	26	No	Death
						Ciprofloxacin	Ciprofloxacin		treated	
						Vancomycin				
71	Female	Blood	<i>Klebsiella</i> spp.	Negative		Vancomycin	None	20	No	
						Ciprofloxacin			treated	
						Piperacillin/				
						tazobactam	~			
71	Male	Tracheal	Klebsiella spp.	Negative	None	Colistin	Colistin	31	No	Death
						Meropenem	Meropenem			
						Ciprofloxacin				
						Vancomycin				
						Ampicillin/ sulbactam				
64	Female	Tracheal	Klebsiella spp.	Negative	Breast	Meropenem	Meropenem	79	No	Death
					cancer	Vancomycin	Colistin			
						Colistin				
						Ciprofloxacin				
						Imipenem				
						Metronidazole				

ESBL=Extended spectrum beta-lactamase-producing, DM=Diabetes mellitus, IHD=Ischemic heart disease, HCV=Hepatitis C virus, DM=Diabetes mellitus, HTN=Hypertension, COPD=Chronic obstructive pulmonary disease, DLP=Dyslipidemia

that show low-ESBL activity.^[18] It has been shown that 13.63% of ESBL positive strains were not recognized by double disk method.^[18] Therefore, some of non-ESBL strains in our study may be false negatives of the test. In this study, CRE isolates were detected based on the results of the disk diffusion method and were not confirmed based on the phenotypic and genotypic assays.

Most MDR Gram-negative strains frequently carry both carbapenemase and ESBL genes. Specific methods such as bromic acid in combination with clavulanate are recommended to unmask the underlying ESBLs among *Enterobacteriaceae* family with carbapenemase enzyme. However, carbapenems-hydrolyzing ability of non-ESBL species is not impossible.^[22]

Pharmacokinetic parameters such as inadequate tissue penetration of antimicrobial agents can influence the clinical responses in

50

in vivo settings.^[23] Most of the recruited patients had at least one of the following severe comorbidities including malignancies, respiratory disorders, ischemic heart disease, heart failure, diabetes mellitus, renal failure, cerebrovascular accident, hepatitis, immunodeficiency, and sepsis. A high rate mortality rate among our patients may be related to these conditions.

Unfortunately like other countries, CRE prevalence in our country is increasing in the recent years. Empiric administration of carbapenems should be restricted to patients with risk factors of infections with ESBL-P bacteria and in specific clinical situations. To limit the use of last-line antibiotics such as carbapenems, availability of accurate phenotypic, and genotypic methods for detection of ESBL-P and carbapenemase strains is essential in clinical practice.

AUTHORS' CONTRIBUTION

Masoume Malekolkottab contributed in data gathering. Lida Shojaei contributed in drafting the manuscript and data gathering. Hossein Khalili contributed in data interpretation and manuscript editing. Mahsa Doumanlu performed laboratory analysis.

ACKNOWLEDGMENTS

This study was extracted from the results of a clinical research performed by clinical pharmacists team in Iran. With thanks from staffs of Imam Khomeini Hospital for their kind support.

FINANCIAL SUPPORT AND SPONSORSHIP

Nil.

CONFLICTS OF INTEREST

There are no conflicts of interest.

REFERENCES

- 1. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. P T 2015;40:277-83.
- 2. Gelbrand H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, *et al.* The state of the world's antibiotics 2015. Wound Heal South Afr 2015;8:30-4.
- 3. de La Blanchardière A, Dargère S, Guérin F, Daurel C, Saint-Lorant G, Verdon R, *et al.* Non-carbapenem therapy of urinary tract infections caused by extended-spectrum β-lactamase-producing *Enterobacteriaceae*. Med Mal Infect 2015;45:169-72.
- 4. Afridi FI, Farooqi BJ, Hussain A. Frequency of extended spectrum beta lactamase producing *Enterobacteriaceae* among urinary pathogen isolates. J Coll Physicians Surg Pak 2011;21:741-4.
- U.S. Department of Health and Human Services. Antibiotic Resistance Threats in the United States. Atlanta, GA: Centers for Disease Control and Prevention; 2013. Available from: http:// www.cdc.gov/drugresistance/threat-report-2013. [Last accessed on 2014 Jul 17].
- Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in gram-negative bacilli. Ann Intensive Care 2015;5:61.
- 7. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005;18:657-86.
- Safari M, Saidijam M, Bahador A, Jafari R, Alikhani MY. High prevalence of multidrug resistance and metallo-beta-lactamase (MBL) producing *Acinetobacter baumannii* isolated from patients in ICU wards, Hamadan, Iran. J Res Health Sci 2013;13:162-7.
- Behrooozi A, Rahbar M, Jalil V. Frequency of extended spectrum beta-lactamase (ESBLs) producing *Escherichia coli* and *Klebseilla pneumonia* isolated from urine in an Iranian 1000-bed tertiary care hospital. Afr J Microbiol Res 2010;4:881-4.
- 10. Patel J, Cockerill F, Alder J, Bradford P, Eliopoulos G, Hardy D, et al. Performance Standards for Antimicrobial Susceptibility

Testing; Twenty-Fourth Informational Supplement. Vol. 34, Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2014. p. 1-226.

- Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40.
- Mansouri S, Abbasi S. Prevalence of multiple drug resistant clinical isolates of extended-spectrum beta-lactamase producing *Enterobacteriaceae* in Southeast Iran. Iran J Med Sci 2015;35:101-8.
- Mirsalehian A, Akbari-Nakhjavani F, Peymani A, Kazemi B, Ameli FJ, Mirafshar SM. Prevalence of extended spectrum β-lactamase-producing *Enterobacteriaceae* by phenotypic and genotypic methods in intensive care units in Tehran, Iran. Daru 2008;16:169-73.
- Tsakris A, Poulou A, Themeli-Digalaki K, Voulgari E, Pittaras T, Sofianou D, *et al.* Use of boronic acid disk tests to detect extended- spectrum beta-lactamases in clinical isolates of KPC carbapenemase-possessing enterobacteriaceae. J Clin Microbiol 2009;47:3420-6.
- 15. Ghafourian S, Bin Sekawi Z, Sadeghifard N, Mohebi R, Kumari Neela V, Maleki A, *et al.* The prevalence of ESBLs producing *Klebsiella pneumoniae* isolates in some major hospitals, Iran. Open Microbiol J 2011;5:91-5.
- Hasanvand B, Kashef M, Alvandi A, Abiri R. Prevalence of ESBL and MBL in *Acinetobacter baumanii* isolated from Iranian patients during the recent 10 years. Iran J Public Health 2014;43:42.
- 17. Fatemi SM, Doosti A, Tavakoli H, Moayednia R, Ghasemi-Dehkordi P, Kelidari B, *et al.* Antibiotic susceptibility patterns of isolated bacteria from bile fluids of patients with gallstone disease in Isfahan city (Iran). Arch Biol Sci 2015;67:611-7.
- Biswas S, Mia M, Ara N, Ibrahim M, Nasir T, Yunus S. Comparison of three dimensional test and double disc synergy test for detection of extended spectrum β-lactamase (ESBL) producing gram negative bacteria. Pulse 2014;6:12-9.
- Sanders CC, Barry AL, Washington JA, Shubert C, Moland ES, Traczewski MM, *et al.* Detection of extended-spectrum-beta-lactamase-producing members of the family *Enterobacteriaceae* with Vitek ESBL test. J Clin Microbiol 1996;34:2997-3001.
- 20. Numanovic F, Hukic M, Delibegovic Z, Tihic N, Pasic S, Gegic M. Comparison of double disk synergy test, VITEK 2 and Check-MDR CT102 for detection of ESBL producing isolates. Acta Med Acad 2013;42:15-24.
- Morosini MI, García-Castillo M, Tato M, Gijón D, Valverde A, Ruiz-Garbajosa P, *et al.* Rapid detection of β-lactamase-hydrolyzing extended-spectrum cephalosporins in *Enterobacteriaceae* by use of the new chromogenic βLacta test. J Clin Microbiol 2014;52:1741-4.
- Poulou A, Grivakou E, Vrioni G, Koumaki V, Pittaras T, Pournaras S, *et al.* Modified CLSI extended-spectrum β-lactamase (ESBL) confirmatory test for phenotypic detection of ESBLs among *Enterobacteriaceae* producing various β-lactamases. J Clin Microbiol 2014;52:1483-9.
- 23. Endimiani A, Luzzaro F, Perilli M, Lombardi G, Colì A, Tamborini A, *et al.* Bacteremia due to *Klebsiella pneumoniae* isolates producing the TEM-52 extended-spectrum beta-lactamase: Treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis 2004;38:243-51.